Extensions 1→N→G→Q→1 with N=C2 and Q=C22.M4(2)

Direct product G=N×Q with N=C2 and Q=C22.M4(2)
dρLabelID
C2×C22.M4(2)64C2xC2^2.M4(2)128,189


Non-split extensions G=N.Q with N=C2 and Q=C22.M4(2)
extensionφ:Q→Aut NdρLabelID
C2.1(C22.M4(2)) = C23.19C42central extension (φ=1)64C2.1(C2^2.M4(2))128,12
C2.2(C22.M4(2)) = C22.M5(2)central extension (φ=1)64C2.2(C2^2.M4(2))128,54
C2.3(C22.M4(2)) = C4⋊C4⋊C8central stem extension (φ=1)128C2.3(C2^2.M4(2))128,3
C2.4(C22.M4(2)) = C23.7M4(2)central stem extension (φ=1)64C2.4(C2^2.M4(2))128,55
C2.5(C22.M4(2)) = C42⋊C8central stem extension (φ=1)32C2.5(C2^2.M4(2))128,56
C2.6(C22.M4(2)) = C423C8central stem extension (φ=1)32C2.6(C2^2.M4(2))128,57
C2.7(C22.M4(2)) = C23.2M4(2)central stem extension (φ=1)32C2.7(C2^2.M4(2))128,58
C2.8(C22.M4(2)) = C42.C8central stem extension (φ=1)164C2.8(C2^2.M4(2))128,59
C2.9(C22.M4(2)) = C22⋊C4.C8central stem extension (φ=1)324C2.9(C2^2.M4(2))128,60

׿
×
𝔽